When you investigate aircraft accidents
you get to learn some really important lessons. Usually by then it is
a bit late. I was involved, as an expert witness, in a legal case
where a TCM IO-520 engine had a catastrophic engine failure in
flight. The crankshaft fractured and broke near the rear section and
the engine instantly stopped producing power, which is what you would
expect. Luckily no one was seriously injured.
The post accident investigation of the
engine components revealed that the cause of the crankshaft failure
was due to oil starvation to the main bearing journal. The oil
starvation was caused by the main bearing shell rotating about 30
degrees within the main bearing crankcase saddle. The mating surfaces
(parting surfaces) of the left and right crankcase saddles had signs
of severe fretting. There were no other signs of fretting anywhere
else in the case mating surfaces. Our determination as to the
originating cause of the failure was that the through-bolts had
inadequate torque. It had been about one year since the engine was
overhauled and 440 hours. This was being maintained under Part 135
and was receiving 100 hour inspection. The records showed that no one
had ever checked the torque of these bolts during their routine
maintenance.
In this engine there are 5 main bearing
saddles and each one has two through-bolts, one above and one below
the main bearing saddle. This allows for a total of 10 through-bolts.
These through-bolts are extremely important in clamping the entire
case halves together and supporting the crankshaft. It was our
determination that the clamping force was inadequate which allowed
the bearing shell to rotate due to its loss of crush. It is this
crush that keeps the bearing shell in place, not those two small
tangs. This clamping force on each of the 5 main bearing saddles is
supplied by the two through-bolts at each saddle.
The torque of these through-bolts is
what sets the pre-load or stretch, which in turn applies the clamping
force. It is this clamping force that resists movement between the
two case halves. Even the smallest amount of movement between these
surfaces will cause fretting. Fretting is a type of wear that occurs
when two or more surfaces are in contact with each other under a
load. Now if there is any movement between these surfaces, even at
the microscopic level, fretting will happen. This fretting is wear,
so now the surfaces are losing material which means that the clamping
force will weaken as more material is lost, which in turn allows for
more movement. Now you have a self-sustaining cycle which will
progress rapidly.
The FAR's under Part 43 Appendix D
contains a checklist of required items that is to be inspected for
each 100 hour/Annual inspection. Below is a quote from Appendix D
(d)
Each
person performing an annual or 100-hour inspection shall inspect
(where
applicable)
components of the engine and nacelle group as follows:
(1)
Engine section—for visual evidence of excessive oil, fuel, or
hydraulic leaks,
and
sources of such leaks.
(2)
Studs and nuts—for improper torquing and obvious defects.
As you can see in
(d) (2) it calls out for inspecting nuts for improper torque as part
of the engine inspection. This is pretty vague as it does not specify
exactly which studs and nuts to check. It is up to the mechanic to
decide which ones they are going to check as it is impractical to
check every one. Personally I would be looking at those that are
critical verses non-critical. These through-bolts are the few that I
would classify as “critical”.
So now you are
asking, “if a nut is torqued why would I ever need to recheck it?”
Well that is a good question and it deserves to be addressed in
another topic so you will have to read my blog post on that subject
here. Go here for that explanation.
The bottom line to
this blog is that if the operator of this aircraft had spent the time
to check the torque on these through-bolts, and had re-torqued them
as required, then this failure might have been prevented.
No comments:
Post a Comment